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Introduction

We consider the following problem:

min
x∈Rn

f (x) :=
1

2
x>Ax − b>x (1)

A – n × n symmetric positive definite matrix

Unique solution x∗ = A−1b

n can be huge
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Randomized Coordinate Descent (RCD)

Algorithm 1

Parameters: probabilities p1, . . . , pn > 0
Initialize: Choose x0 ∈ Rn

for t = 0, 1, 2, . . . do
Sample random i ∈ [n] with probability pi > 0
Set xt+1 = xt − Ai :xt−bi

Aii
ei , where ei – i-th basis vector

end for

Theorem (Leventhal & Lewis (2010))

Let probabilities pi be proportional to diagonal elements Aii . Then the

random iterates of Algorithm 1 satisfy E
[
‖xt − x∗‖2A

]
≤ ε as long as the

number of iterations t is at least

O
(

Tr (A)

λmin(A)
log

1

ε

)
. (2)
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Sketch and Project

Algorithm 2 (Gower & Richtárik 2015)

Parameter: Distribution D over vectors in Rn

Initialization: Choose x0 ∈ Rn

for t = 0, 1, 2 . . . do
Sample random vector st from D
Set xt+1 = xt − s>t (Axt−b)

s>t Ast
st

end for

Theorem (Gower & Richtárik 2015, Richtárik & Takáč 2017)

Let H = ss>

s>As
, W = Es∼D

[
A1/2HA1/2

]
. Then the random iterates of

Algorithm 2 satisfy E
[
‖xt − x∗‖2A

]
≤ ε as long as the number of iterations

t is at least

O
(

1

λmin(W)
log

1

ε

)
. (3)
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RCD with Arbitrary Probabilities

Applying the previous theorem for RCD with arbitrary probabilities gives
the following rate:

O

 1

λmin

(
ADiag

(
pi
Aii

)) log
1

ε

 . (4)
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Uniform Probabilities Can Be Optimal

Theorem

Let n = 2 and consider RCD with probabilities p1 > 0 and p2 > 0,
p1 + p2 = 1. Then the choice p1 = p2 = 1

2 optimizes the rate of RCD in
(4).

Theorem

Let n ≥ 2 and let A be diagonal. Then uniform probabilities (pi = 1
n for all

i) optimize the rate of RCD in (4).

D. Kovalev (KAUST) March 26, 2019 7 / 17



Importance Sampling Can Be Unimportant

Diagonal and row-squared-norm probabilities can lead to an arbitrarily
worse performance than uniform probabilities:

Theorem

For every n ≥ 2 and T > 0, there exists A such that:

(i) The rate of RCD with pi ∼ Aii is T times worse than the rate of RCD
with uniform probabilities.

(ii) The rate of RCD with pi ∼ ‖Aii‖2 is T times worse than the rate of
RCD with uniform probabilities.
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Optimal Probabilities Can Be Bad

We can’t adjust probabilities in (4) to obtain a rate that is independent of
matrix A:

Theorem

For every n ≥ 2 and T > 0, there exists A such that the number of
iterations (as expressed by formula (4)) of RCD with any choice of
probabilities p1, . . . , pn > 0 is O(T log(1/ε)).

Lower bound can also be arbitrarily bad:

Theorem

For every n ≥ 2 and T > 0, there exists an n × n positive definite matrix
A and starting point x0, such that the number of iterations of RCD with
any choice probabilities p1, . . . , pn > 0 is Ω(T log(1/ε)).
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Stochastic Spectral Descent (SSD)

Algorithm 2 obtains the optimal rate

O
(
n log

1

ε

)
(5)

when D is chosen to be the uniform distribution over the eigenvectors
of A. We call this method stochastic spectral descent (SSD).

The same rate is obtained when D is chosen to be the uniform
distribution over A-orthogonal vectors (i.e. vectors u1, . . . , un such
that u>i Auj = 0 for all i 6= j). We call this method stochastic
conjugate descent (SconD).

SSD is not a practical method due to high preprocessing cost:
computation of eigenvectors.
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Stochastic Spectral Coordinate Descent (SSCD)

Consider eigenvalue decomposition of A:

A =
n∑

i=1

λiuiu
>
i (6)

eigenvalues: 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn, eigenvectors: u1 . . . , un.

Algorithm 3

Parameter: k ∈ {0, . . . , n − 1}
Set Ck = kλk+1 +

∑n
i=k+1 λi

Set D to be the following distrubution:

s =

{
ei , with probability Aii

Ck
, i = 1, . . . , n

ui , with probability λk+1−λi
Ck

, i = 1, . . . , k

Run Algorithm 2 with distribution D
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Stochastic Spectral Coordinate Descent (SSCD)

Theorem

The random iterates of Algorithm 3 satisfy E
[
‖xt − x∗‖2A

]
≤ ε as long as

the number of iterations t is at least

O
(

Ck

λk+1
log

1

ε

)
. (7)

Moreover the rate of convergence improves as k grows:

Tr (A)

λmin(A)
=

C0

λ1
≥ · · · ≥ Cn−1

λn
= n. (8)
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Convergence Rate: Unaffected by k if All Eigenvalues are
Tightly Clustered

Convergence rate is unaffected by k if all eigenvalues are tightly clustered:

Figure: Eigenvalues were sampled from uniform distribution on [10; 11]; n = 50
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Convergence Rate Improves as k Increases

Convergence rate improves as k increases:

Figure: Eigenvalues were sampled from uniform distribution on [0; 105]; n = 50
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Convergence Rate: Phase Transition when k Crosses from
One Cluster of Eigenvalues to Another

Figure: One third of eigenvalues were sampled from uniform distribution on
[10; 11], one third from uniform distribution on [100; 101] and one third from
uniform distribution on [1, 000; 1, 001]; n = 30
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Matrix with 10 Billion Entries
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Figure: Top row: spectrum of A is uniformly distributed on [1, 100]; bottom row:
spectrum contained in two clusters: [1, 2] and [100, 200]; n = 105
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Conclusions

Negative results that highlight limitations of RCD with importance
sampling

Acceleration of RCD based on the augmentation of the set of
coordinate directions by a few spectral directions

Not mentioned: SSD/SconD with inexact spectral/conjugate
directions.
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