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Introduction

We consider the following problem:

1
f TAx—b" 1
min f(x) := x—b x (1)
@ A — n x n symmetric positive definite matrix

@ Unique solution x, = A~1h

@ n can be huge
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Randomized Coordinate Descent (RCD)

Algorithm 1

Parameters: probabilities p1,...,p, >0
Initialize: Choose xg € R”
fort =0,1,2,... do

Sample random i € [n] with probability p; > 0

Set xp11 = x¢ — ie;, where e; — i-th basis vector

end for

A,':Xt—b
Aji
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Randomized Coordinate Descent (RCD)

Algorithm 1

Parameters: probabilities p1,...,p, >0
Initialize: Choose xg € R”
fort =0,1,2,... do

Sample random i € [n] with probability p; > 0

Set xpy11 = X¢ — We;, where e; — i-th basis vector
n
end for

Theorem (Leventhal & Lewis (2010))

Let probabilities p; be proportional to diagonal elements Aj;. Then the
random iterates of Algorithm 1 satisfy E [||xt - x*||f\} < € as long as the
number of iterations t is at least

O (S ) @)
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Sketch and Project

Algorithm 2 (Gower & Richtdrik 2015)

Parameter: Distribution D over vectors in R”
Initialization: Choose x5 € R”
fort=0,1,2... do

Sample random vector s; from D

=
— _ S (AXt—b)
Set Xt+1 Xt _;SJ—A& St

end for
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Sketch and Project

Algorithm 2 (Gower & Richtdrik 2015)

Parameter: Distribution D over vectors in R”
Initialization: Choose x5 € R”
fort=0,1,2... do

Sample random vector s; from D

Set Xpy41 = X¢ — F-F=—25;

end for

Let H= %, W = Eq_p [AYV2HAY2]. Then the random iterates of

sTAs

Algorithm 2 satisfy E [||xt - x*||ﬂ < € as long as the number of iterations

0 (Am;(w) ot %) . (3)1
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RCD with Arbitrary Probabilities

Applying the previous theorem for RCD with arbitrary probabilities gives
the following rate:

1 1
Amin <ADiag (;4)) og |- (4)

O
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Uniform Probabilities Can Be Optimal

Let n = 2 and consider RCD with probabilities p1 > 0 and po > 0,
p1 + p> = 1. Then the choice p1 = p» = % optimizes the rate of RCD in

(4)-

Theorem

Let n > 2 and let A be diagonal. Then uniform probabilities (p; = % for all
i) optimize the rate of RCD in (4).

V.
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Importance Sampling Can Be Unimportant

Diagonal and row-squared-norm probabilities can lead to an arbitrarily
worse performance than uniform probabilities:

Theorem
For every n > 2 and T > 0, there exists A such that:
(i) The rate of RCD with p; ~ Aj; is T times worse than the rate of RCD
with uniform probabilities.
(ii) The rate of RCD with p; ~ ||Aji||? is T times worse than the rate of
RCD with uniform probabilities. )
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Optimal Probabilities Can Be Bad

We can't adjust probabilities in (4) to obtain a rate that is independent of
matrix A:

For every n > 2 and T > 0, there exists A such that the number of
iterations (as expressed by formula (4)) of RCD with any choice of
probabilities pi, ..., pn > 0 is O(T log(1/¢)).

D. Kovalev (KAUST) March 26, 2019  9/17



Optimal Probabilities Can Be Bad

We can't adjust probabilities in (4) to obtain a rate that is independent of

matrix A:

For every n > 2 and T > 0, there exists A such that the number of
iterations (as expressed by formula (4)) of RCD with any choice of
probabilities pi, ..., pn > 0 is O(T log(1/¢)).

Lower bound can also be arbitrarily bad:

For every n > 2 and T > 0, there exists an n X n positive definite matrix
A and starting point xg, such that the number of iterations of RCD with

any choice probabilities p1, ..., pn > 0 is Q(T log(1/e)).
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Stochastic Spectral Descent (SSD)

@ Algorithm 2 obtains the optimal rate

0 (n log %) (5)

when D is chosen to be the uniform distribution over the eigenvectors
of A. We call this method stochastic spectral descent (SSD).

@ The same rate is obtained when D is chosen to be the uniform
distribution over A-orthogonal vectors (i.e. vectors ui, ..., u, such
that v Au; = 0 for all i # j). We call this method stochastic
conjugate descent (SconD).

@ SSD is not a practical method due to high preprocessing cost:
computation of eigenvectors.
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Stochastic Spectral Coordinate Descent (SSCD)

Consider eigenvalue decomposition of A:
n
A= Z Aiuju (6)
i=1

eigenvalues: 0 < A1 < A < ... < A, eigenvectors: uy ..., Up.
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Stochastic Spectral Coordinate Descent (SSCD)

Consider eigenvalue decomposition of A:

n
A= Z/\,‘U,’U,T (6)
i=1

eigenvalues: 0 < A1 < A < ... < A, eigenvectors: uy ..., Up.

Algorithm 3

Parameter: k € {0,...,n—1}
Set C, = k)\k_|_1 + Z?:k—f—l Aj
Set D to be the following distrubution:

e, with probab|I|ty =1l
S =
uj, with probability M,i = 1, .ok

Run Algorithm 2 with distribution D

v
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Stochastic Spectral Coordinate Descent (SSCD)

Theorem

The random iterates of Algorithm 3 satisfy E [||xt — x*||ﬂ < € as long as
the number of iterations t is at least

Ci 1)
(@) log — | . 7
(m og - ™)

Moreover the rate of convergence improves as k grows:

Tr (A) . Co Cn—l _
Non(A) g = N " (®)
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Convergence Rate: Unaffected by k if All Eigenvalues are

Tightly Clustered

Convergence rate is unaffected by k if all eigenvalues are tightly clustered:
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Figure: Eigenvalues were sampled from uniform distribution on [10;11]; n = 50
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Figure: Eigenvalues were sampled from uniform distribution on [0; 10°]; n = 50
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Convergence Rate: Phase Transition when k Crosses from

One Cluster of Eigenvalues to Another

Estimation of squared distance to the solution
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Figure: One third of eigenvalues were sampled from uniform distribution on
[10; 11], one third from uniform distribution on [100; 101] and one third from
uniform distribution on [1,000; 1,001]; n = 30
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Matrix with 10 Billion Entries
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Figure: Top row: spectrum of A is uniformly distributed on [1,100]; bottom row:
spectrum contained in two clusters: [1,2] and [100,200]; n = 10°
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Conclusions

o Negative results that highlight limitations of RCD with importance
sampling

@ Acceleration of RCD based on the augmentation of the set of
coordinate directions by a few spectral directions

@ Not mentioned: SSD/SconD with inexact spectral/conjugate
directions.
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