Stochastic Spectral and Conjugate Descent Methods

Dmitry Kovalev
Joint work with P. Richtárik, E. Gorbunov and E. Gasanov

KAUST
March 26, 2019

Paper

This talk is based on paper:
Dmitry Kovalev, Peter Richtarik, Eduard Gorbunov, and Elnur Gasanov.
Stochastic spectral and conjugate descent methods.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 3358-3367. Curran Associates, Inc., 2018.

Introduction

We consider the following problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x):=\frac{1}{2} x^{\top} \mathbf{A} x-b^{\top} x \tag{1}
\end{equation*}
$$

- $\mathbf{A}-n \times n$ symmetric positive definite matrix
- Unique solution $x_{*}=\mathbf{A}^{-1} b$
- n can be huge

Randomized Coordinate Descent (RCD)

Algorithm 1

Parameters: probabilities $p_{1}, \ldots, p_{n}>0$
Initialize: Choose $x_{0} \in \mathbb{R}^{n}$
for $t=0,1,2, \ldots$ do
Sample random $i \in[n]$ with probability $p_{i}>0$
Set $x_{t+1}=x_{t}-\frac{\mathbf{A}_{i}: x_{t}-b_{i}}{\mathbf{A}_{i i}} e_{i}$, where $e_{i}-i$-th basis vector end for

Randomized Coordinate Descent (RCD)

Algorithm 1

Parameters: probabilities $p_{1}, \ldots, p_{n}>0$
Initialize: Choose $x_{0} \in \mathbb{R}^{n}$
for $t=0,1,2, \ldots$ do
Sample random $i \in[n]$ with probability $p_{i}>0$
Set $x_{t+1}=x_{t}-\frac{\mathbf{A}_{i:} x_{t}-b_{i}}{\mathbf{A}_{i i}} e_{i}$, where $e_{i}-i$-th basis vector end for

Theorem (Leventhal \& Lewis (2010))

Let probabilities p_{i} be proportional to diagonal elements $\mathbf{A}_{i i}$. Then the random iterates of Algorithm 1 satisfy $\mathbb{E}\left[\left\|x_{t}-x_{*}\right\|_{\mathbf{A}}^{2}\right] \leq \epsilon$ as long as the number of iterations t is at least

$$
\begin{equation*}
\mathcal{O}\left(\frac{\operatorname{Tr}(\mathbf{A})}{\lambda_{\min }(\mathbf{A})} \log \frac{1}{\epsilon}\right) . \tag{2}
\end{equation*}
$$

Sketch and Project

Algorithm 2 (Gower \& Richtárik 2015)

Parameter: Distribution \mathcal{D} over vectors in \mathbb{R}^{n} Initialization: Choose $x_{0} \in \mathbb{R}^{n}$ for $t=0,1,2 \ldots$ do

Sample random vector s_{t} from \mathcal{D}

$$
\text { Set } x_{t+1}=x_{t}-\frac{s_{t}^{\top}\left(\mathbf{A} x_{t}-b\right)}{s_{t}^{\top} \mathbf{A} s_{t}} s_{t}
$$

end for

Sketch and Project

Algorithm 2 (Gower \& Richtárik 2015)

Parameter: Distribution \mathcal{D} over vectors in \mathbb{R}^{n} Initialization: Choose $x_{0} \in \mathbb{R}^{n}$
for $t=0,1,2 \ldots$ do
Sample random vector s_{t} from \mathcal{D}

$$
\text { Set } x_{t+1}=x_{t}-\frac{s_{t}^{\top}\left(\mathbf{A} x_{t}-b\right)}{s_{t}^{\top} \mathbf{A} s_{t}} s_{t}
$$

end for

Theorem (Gower \& Richtárik 2015, Richtárik \& Takáč 2017)

Let $\mathbf{H}=\frac{s^{\top}}{s^{\top} \mathbf{A s}_{s}}, \mathbf{W}=\mathbb{E}_{s \sim \mathcal{D}}\left[\mathbf{A}^{1 / 2} \mathbf{H} \mathbf{A}^{1 / 2}\right]$. Then the random iterates of Algorithm 2 satisfy $\mathbb{E}\left[\left\|x_{t}-x_{*}\right\|_{\mathbf{A}}^{2}\right] \leq \epsilon$ as long as the number of iterations t is at least

$$
\begin{equation*}
\mathcal{O}\left(\frac{1}{\lambda_{\min }(\mathbf{W})} \log \frac{1}{\epsilon}\right) \tag{3}
\end{equation*}
$$

RCD with Arbitrary Probabilities

Applying the previous theorem for RCD with arbitrary probabilities gives the following rate:

$$
\begin{equation*}
\mathcal{O}\left(\frac{1}{\lambda_{\min }\left(\mathbf{A D i a g}\left(\frac{p_{i}}{\mathbf{A}_{i i}}\right)\right)} \log \frac{1}{\epsilon}\right) . \tag{4}
\end{equation*}
$$

Uniform Probabilities Can Be Optimal

TheoremLet $n=2$ and consider $R C D$ with probabilities $p_{1}>0$ and $p_{2}>0$,$p_{1}+p_{2}=1$. Then the choice $p_{1}=p_{2}=\frac{1}{2}$ optimizes the rate of $R C D$ in(4).

Theorem

Let $n \geq 2$ and let A be diagonal. Then uniform probabilities ($p_{i}=\frac{1}{n}$ for all i) optimize the rate of $R C D$ in (4).

Importance Sampling Can Be Unimportant

Diagonal and row-squared-norm probabilities can lead to an arbitrarily worse performance than uniform probabilities:

Theorem

For every $n \geq 2$ and $T>0$, there exists \mathbf{A} such that:
(i) The rate of $R C D$ with $p_{i} \sim \mathbf{A}_{i i}$ is T times worse than the rate of $R C D$ with uniform probabilities.
(ii) The rate of $R C D$ with $p_{i} \sim\left\|\mathbf{A}_{i i}\right\|^{2}$ is T times worse than the rate of $R C D$ with uniform probabilities.

Optimal Probabilities Can Be Bad

We can't adjust probabilities in (4) to obtain a rate that is independent of matrix A:

Theorem

For every $n \geq 2$ and $T>0$, there exists \mathbf{A} such that the number of iterations (as expressed by formula (4)) of RCD with any choice of probabilities $p_{1}, \ldots, p_{n}>0$ is $\mathcal{O}(T \log (1 / \epsilon))$.

Optimal Probabilities Can Be Bad

We can't adjust probabilities in (4) to obtain a rate that is independent of matrix A:

Theorem

For every $n \geq 2$ and $T>0$, there exists \mathbf{A} such that the number of iterations (as expressed by formula (4)) of RCD with any choice of probabilities $p_{1}, \ldots, p_{n}>0$ is $\mathcal{O}(T \log (1 / \epsilon))$.

Lower bound can also be arbitrarily bad:

Theorem

For every $n \geq 2$ and $T>0$, there exists an $n \times n$ positive definite matrix A and starting point x_{0}, such that the number of iterations of $R C D$ with any choice probabilities $p_{1}, \ldots, p_{n}>0$ is $\Omega(T \log (1 / \epsilon))$.

Stochastic Spectral Descent (SSD)

- Algorithm 2 obtains the optimal rate

$$
\begin{equation*}
\mathcal{O}\left(n \log \frac{1}{\epsilon}\right) \tag{5}
\end{equation*}
$$

when \mathcal{D} is chosen to be the uniform distribution over the eigenvectors of \mathbf{A}. We call this method stochastic spectral descent (SSD).

- The same rate is obtained when \mathcal{D} is chosen to be the uniform distribution over \mathbf{A}-orthogonal vectors (i.e. vectors u_{1}, \ldots, u_{n} such that $u_{i}^{\top} \mathbf{A} u_{j}=0$ for all $i \neq j$). We call this method stochastic conjugate descent (SconD).
- SSD is not a practical method due to high preprocessing cost: computation of eigenvectors.

Stochastic Spectral Coordinate Descent (SSCD)

Consider eigenvalue decomposition of \mathbf{A} :

$$
\begin{equation*}
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \tag{6}
\end{equation*}
$$

eigenvalues: $0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$, eigenvectors: $u_{1} \ldots, u_{n}$.

Stochastic Spectral Coordinate Descent (SSCD)

Consider eigenvalue decomposition of \mathbf{A} :

$$
\begin{equation*}
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \tag{6}
\end{equation*}
$$

eigenvalues: $0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$, eigenvectors: $u_{1} \ldots, u_{n}$.

Algorithm 3

Parameter: $k \in\{0, \ldots, n-1\}$
Set $C_{k}=k \lambda_{k+1}+\sum_{i=k+1}^{n} \lambda_{i}$
Set \mathcal{D} to be the following distrubution:

$$
s= \begin{cases}e_{i}, & \text { with probability } \frac{\mathbf{A}_{i i}}{C_{k}}, i=1, \ldots, n \\ u_{i}, & \text { with probability } \frac{\lambda_{k+1}-\lambda_{i}}{C_{k}}, i=1, \ldots, k\end{cases}
$$

Run Algorithm 2 with distribution \mathcal{D}

Stochastic Spectral Coordinate Descent (SSCD)

Theorem

The random iterates of Algorithm 3 satisfy $\mathbb{E}\left[\left\|x_{t}-x_{*}\right\|_{\mathbf{A}}^{2}\right] \leq \epsilon$ as long as the number of iterations t is at least

$$
\begin{equation*}
\mathcal{O}\left(\frac{C_{k}}{\lambda_{k+1}} \log \frac{1}{\epsilon}\right) . \tag{7}
\end{equation*}
$$

Moreover the rate of convergence improves as k grows:

$$
\begin{equation*}
\frac{\operatorname{Tr}(\mathbf{A})}{\lambda_{\min }(\mathbf{A})}=\frac{C_{0}}{\lambda_{1}} \geq \cdots \geq \frac{C_{n-1}}{\lambda_{n}}=n . \tag{8}
\end{equation*}
$$

Convergence Rate: Unaffected by k if All Eigenvalues are Tightly Clustered

Convergence rate is unaffected by k if all eigenvalues are tightly clustered:

Figure: Eigenvalues were sampled from uniform distribution on [10; 11]; $n=50$

Convergence Rate Improves as k Increases

Convergence rate improves as k increases:

Figure: Eigenvalues were sampled from uniform distribution on $\left[0 ; 10^{5}\right] ; n=50$

Convergence Rate: Phase Transition when k Crosses from One Cluster of Eigenvalues to Another

Figure: One third of eigenvalues were sampled from uniform distribution on [10; 11], one third from uniform distribution on $[100 ; 101]$ and one third from uniform distribution on $[1,000 ; 1,001] ; n=30$

Matrix with 10 Billion Entries

Figure: Top row: spectrum of \mathbf{A} is uniformly distributed on [1, 100]; bottom row: spectrum contained in two clusters: $[1,2]$ and $[100,200] ; n=10^{5}$

Conclusions

- Negative results that highlight limitations of RCD with importance sampling
- Acceleration of RCD based on the augmentation of the set of coordinate directions by a few spectral directions
- Not mentioned: SSD/SconD with inexact spectral/conjugate directions.

